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A new method, previously used in calculating atomic correlation energies, is shown to be applicable to 
a wide variety of atomic and molecular problems. Use is made of the fact that it is possible in many problems 
to calculate exactly the first-order perturbation correction to uncoupled Hartree-Fock wavefunctions 
and also second-order energy expressions. Particular application is made to the numerical calculation of 
dipole and quadrupole polarizabilities and shielding factors for the beryllium atom. 6 

I. INTRODUCTION 

HE subject of weak interactions (perturbations) T in atomic and molecular problems has been treated 
in many papers in the last decade.’e2 Because of their 
smd! mzigfihde these p e r t ~ r b ~ t i ~ ~  aie i i ~ d : y  ignored 
in the determination of electronic wavefunctions. To 
obtain such small contributions by differences in two 
variational calculations, one with and one without the 
added terms, the variational calculations would have 
to be done to as yet unachieved numerical accuracy. 
Perturbation theory is ideally suited for such calcula- 
tions because the perturbations are truly small and 
because it avoids loss of numerical accuracy by calcu- 
lating these quantities directly. 

In Sec. I1 we discuss the methods of solution of the 
perturbation problem and the new method of exact 
solution of the first-order perturbation wavefunction 
and, hence, the second-order energy for the uncoupled 
HartreeFock model. This method, previously used 
in calculating the correlation energy of the beryllium 
atom: utilizes a mmplete set of single-particle Hartree 
Fock states. This basis set has the surprising property 
that i t  contains the Hartree-Fock orbitals of the 
ground state and all other orbitals are in the continuum 
for most neutral atoms and molecules. The basis set is 
discussed in Sec. 111. In Sec. N this method is applied 
to a calculation of the electric dipole and quadrupole 
polarizabilities and shielding factors of the beryllium 
atom. 
~ 

* Consultant to the Theoretical Chemistry Group at the Jet 
Propulsion Laboratory. 

Review articles: (a) M. Karplus, Rev. Mod. Phys. 32, 455 
(1960). (b) A. Dalgarno, Advan. Phys. 11, 281 (1962). (c) 
P. Cade, “The Theoretical Calculation of the Properties of Mole 
cules,” University of Wisconsin Report, WIS-AEC-21, 18 May 
1959. This report contains a complete survey of the literature 
prior to 1959. In this paper the term “weak interactions” refers to 
small perturbations and not to the weak interactions of nuclear 
ohvsics. 
’ i M-Karplus, J. Chem. Phys. 37, 2723 (1962). 

* H. P. Kelly, Phys. Rev. 131, 684 (1963). 

Any second-order problem discussed in Refs. 1, e.g., 
NMR shielding constants, paramagnetic susceptibili- 
ties, time-dependent electric and magnetic susceptibili- 
ties, etc., can be handled by the method of this paper. 

II. PERTURBATION METHODS 

The problem to be solved is4 

where Bo and H l  are any two Hermitian operators and 
X is a smallness parameter. The eigenfunction U and 
the eigenvalue E are expanded in powers of this 
parameter: 

m 

E= XX”E, ,  
n-0 

m 

u= CAWn. (2) 
n-0 

When these expansions are substituted into Eq. ( l ) ,  
an infinite set of coupled equations is obtained; the 
first two are 

HoUo- EoUo=O, (3) 

(Hi -  El)  Uo= ( EQ-Ho) U I ,  (4) 

where 

E ~ = / U J 7 1 U d r l  ( 5) 

‘The formulation given in this section is that presented by 
H. A. Bethe and E. E. Sal eter in Quantum Mechunus of One- 
and Two-Electron Atoms ?Academic Press Inc., New York, 
1957), Sec. 25. 
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written and used to solve for Pkl(r ) .  Another possibility 
is to use Hartree’s numerical methods.12 Asymptotically, 
Pkl(r) should approach Asin[Kr+6l-Z(~/2)]. Once 
the integrodifferential equation (14) or (15) has been 
solved, the phase shift 61 may be readily obtained. If 
the normalization A =  1 is used, then x k  may be re- 
daced bv 

I (See Ref. 3, Sec. 4C for proof.) In  solving Eq. (15) it 
is necessary to consider integrals of the form 

in the exchange term. It was found convenient in the 
numerical work of Ref. 3 to replace the above integral by 

The only quantity which has to be estimated, then, in 
each iteration of Eq. (15) is 

For molecules, because of the lack of spherical sym- 
metry, the variables of the Hartree-Fock equations 
cannot be separated and the equation cannot be 
numerically integrated. In  such cases LCAO fits can 
be obtained for the continuum states. In  this paper 
only the Be atom has been treated. In  future publica- 
tions, calculations will be made for molecules. In any 

K 
FIG. 1. The Is contributions to the integrands of old and p. 

See Eqs. (18) and (19). 

12 D. R. Hartree, The Calculation of Atomic Structures (John 
Wiley & Sons, Inc., New York, 1957), Chap. 4, Sec. 4.5, and Chap. 
5, Sec. 5.2.1. 
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k 
FIG. 2. The 2s contributions to integrands of ad and 0. See 

Eqs. (18) and (19). 

case, it is expected that no intrinsic difficulties occur in 
using this method for molecules. 

IV. POLARIZABILITIES AND SHIELDING FACTORS 

In this section, using the beryllium numerical 
Hartree-Fock radial functions PIs and PL of Kibartas 
and 17utsis,13 the dipole and quadrupole polarizabilities 
and shielding factors are calculated for Be. For a full 
discussion of these quantities see Ref. 1 (b) . This prob- 
lem was chosen because it is one of the few problems 
that has been solved by numerical integration of Eq. 
(4) .5 Since direct integration is equivalent to use of Eq. 
(8), the ideas of this method can be verified by compar- 
ing the answers obtained by the two methods. The pur- 
pose of this section is not to produce any new results but 
to demonstrate the use of a new method of calculation. 
It should be noted that this method can be applied to 
all second-order problems. For example, in the calcula- 
tions of this section, the numerical functions Pkl(r) 

which had been tabulated on IBM cards for the cor- 
relation energy calculation of Ref. 3 were used 
directly. In  order to improve the mesh size for the nu- 
merical integration it was necessary to calculate a 
few additional Pkl(r ) .  

According to Dalgarno,lb the 2L-pole polarizability 
is given by 

N 
a2== 2[up, x r , L p L ( C O S e i )  uo]; (16) 

i=l 

U1CL) is the first-order correction to the wavefunction 
Uo due to the perturbation 

N 
- CrkPL(COSei). 

i=l 

The 2L-pole shielding factor is given by 

~ 

18 V. V. Kibartas and A. P. Yutsis, Zh. Eksperim. i Teor. Fiz. 
25, 264 (1953). 
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The dipole and quadrupole polarizabilities and shielding factors are now expressed in terms of the single-particle 
orbitals, using the notation of this paper. All angular integrations have been performed and atomic units 
are used.12 

Quadrupoie poiarizabiiity = CY*= 

J O  

(20) 

In order to calculate the quantities in Eqs. (18 ) - (21 ) ,  
a number of Pkl(r) used in the correlation energy 
calculation3 were used to calculate matrix elements 
such as 

/omdrPa ( 7 )  ~ P ~ I ( I ) .  

The variation with k was studied and additional 
Pkl(r) and matrix elements were calculated until a 
smooth variation with k was obtained. At this point 
the numerical integration over k was performed. All 
integrations described were performed by Simpson's 
rule. At the outset of any given calculation it is difficult 
to predict which values of k will be important. However, 
in this calculation and a previous one3 this presented 
no serious obstacles. 

As an example, Tables I and I1 and Figs. 1 and 2 
contain values and graphs of the integrands of Eqs. 

(18 )  to ( 2 1 ) .  Table I11 gives the results of this calcula- 
tion. The values for the dipole polarizability and shield- 
ing factor and also for the quadrupole polarizability 
are in excellent agreement with those reported by 
Dalgarno and McNamee? Our value for the quadrupole 
shielding factor, 0.671, is only in fair agreement with 
the value 0.77 reported by Dalgarno and McNamee. 
Although our calculation of y, is the least accurate of 
the four quantities reported, we do not feel that the 
numerical inaccuracy of this calculation is sufticient to 
account for the discrepancy. At present, the distance 
between the two results is unresolved. Dalgarno and 
McXamee give no indication of their accuracy nor 
details of their method in their paper. There are errors 
in this calculation, as in Dalgarno and McNamee's, 
due to the neglect of electron correlations in the zero- 
order functions. These errors tend to cause polarizabili- 
ties and shielding factors calculated in the Hartree- 
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TABLE I. The Pl,(r)  contributions to the integrands of Eqs. (18) and (19) in atomic units. 

0 .os0 
0.100 
0.150 
0.200 
0.225 
0.250 
0.275 
0.300 
0.325 
0.350 
0.375 
0.400 
0.450 . . -. . 

0.500 
0.550 
0.600 
0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.950 
1.000 
1.100 
1.200 
1.300 
1.400 
1.500 
1.600 
1.700 
1.800 
1.900 
2.000 
2.250 
2.500 
2.750 
3.000 
3.250 
3.500 
3.750 
4.000 
4.250 
4.500 
4.750 
5.000 
5.500 
6.000 
7.000 
8.000 
9 .OOO 

10 .no0 _.... 

11.000 
12  .ooo 
14.000 
16.000 

0.00000721 
0.00014006 
0.00096832 
0.00424285 
0.00737040 
0.01080001 
0.01331940 
0.01450957 
0.01476666 
0.01460633 
0.01433019 
0.01410867 
0.01396498 
o ,01414437 
0.01459644 
0.01526303 
0.01605970 
0.01695721 
0.01788440 
0.01882382 
0.01977257 
0.02066225 
0.02150185 
0.02226383 
0.02350398 
0.02433687 
0.02473925 
0.02473924 
0.02456742 
0.02368712 
0.02275030 
0.02162089 
0.02035100 
0.01899387 
0.01548261 
0.01217033 
0.00931016 
0.00698200 
0.00516264 
0.00378115 
0.00275545 
0.00199951 
0.00145099 
0.00105434 
0.00076805 
0.00056129 
0.00029109 
0.00016686 
0.00005414 
0.00001905 
0 ,0000073 1 
0.00000299 
0.00000135 
O.OOOO0062 
0.00000015 
0 .OOOOOOO4 

18.000 0.000000014 
20.000 0.  000000005 
25.000 0 .000000004 
30.000 0.000000002 
40.000 0 
50.000 0 

Fock model to be too large. The possibility exists of 
treating simultaneously the weak interaction and cor- 
relation perturbation; this will be the subject of future 
study. The only quantity calculated in this paper 

0.0000291 
0.0005679 
0.0039339 
0.0175001 
0.0301 193 
0.0442359 
0 .OS46994 
0.0597511 
0.0609958 
0.0605380 
0 .OS96052 
0.0589124 
0 .OS88076 
0.0617897 
0.0627051 
0.0663522 
0.0706733 
0.0756387 
0.0809372 
0.0865192 
0.0923882 
0.0982291 
0.1041 112 
0.1098750 
0.1208307 
0.1307473 
0.1393036 
0.1464076 
0.1519484 
0.1559996 
0.1585717 
0.1597874 
0.1597574 
0.1586062 
0.1516946 
0.1407337 
0.1275299 
0.1135137 
0.0996705 
0 .OS66259 
0.0747416 
0.0641521 
0.0548837 
0.0468598 
0.0399724 
0.0340899 
0.0243186 
0.0181614 
0.0099769 
0.0056669 
0.0035523 
0.0020473 
0.0013116 
0 .0008485 
0.0003887 
0.0001873 
0.0000969 
0.0000554 
0.00001 17 
0.0000121 
0 
0 

which is known exactly is the dipole shielding factor, 
p,. As discussed in Ref. l(b), p, can be shown to be 
1.00 for all neutral atoms, as compared with the value 
1.77 calculated in this paper. 
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TABLE 11. The P*.(r) contributions to the integrands of Eqs. (18) and (19) in atomic units. 

0.025 
0.05 
0.075 
0.10 
0.125 
0.15 
0.175 
0.200 
0.2125 
0.225 
0.2375 
0.25 
0.2625 
0.275 
0.2875 
0.30 
0.325 
0.35 
0.375 
0.400 
0.425 
0.45 
0.475 
0.500 
0.55 
0.60 
0.65 
0.70 
0.725 
0.75 
0.775 
0.800 
0.825 
0.85 
0.875 
0.90 
0.95 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1 . 7  
1 .8  
1.9 
2.0 
2.25 
2.50 
2.75 
3 .O 
3.25 
3.50 
3.75 

0.016689% 
0.27280593 
1 .43 185423 
4.7559999 

12.3729559 
27 SO78705 
54.17801142 
93.81137032 

118.06179406 
141.44609631 
161.70724968 
176.13279418 
182,76662496 
181.92928654 
174.83209470 
163.54402635 
135.45477300 
107.49872369 
83.38712403 
64.02456264 
49.02772812 
37.17497089 
27.87532596 
20.76357042 
11 .Om7266 
5.46434841 
2.7360221 1 
0.879175052 
0.46406394 
0.21066890 
0.06994683 
0.00888660 
0.00231083 
0.02946623 
0.07682700 
0.13400083 
0.2492597 
0,34213768 
0.43077981 
0.41852943 
0.36097785 
0.29OO1554 
0.22394331 
0.16817053 
0.12450798 
0 .O9129697 
0.06723696 
0.04929644 
0.02269741 
0.011 23554 
0.00555678 
0.00303166 
0.00161051 
0.00094307 
0.00054573 

0.00040352 
0.00667548 
0.03556810 
0.12264762 
0.32362105 
0.74519897 
1.52891609 
2.78213743 
3.58260733 
4.40961588 
5.18773844 
5.82106844 
6.23111280 
6.40699503 
6.369554O8 
6.16969893 
5.50119809 
4.72390058 
3.98648411 
3.34532079 
2.81185997 
2.35351738 
1.96045588 
1 ,63088548 
1.10515589 
0.72352200 
0.47464813 
0.21832027 
0.17278178 
0.11 133724 
0.06120580 
0.02076033 

-0.01005833 
- 0.03400750 
-0.05184196 
-0.06440500 
-0.07686653 
-0.07741929 
-0.0.5934279 
-0.03297240 
-0.00867071 
$0,01018638 

0.02324213 
0.03126413 
0.035457 17 
0.03688086 
0.03663025 
0,03514126 
0.02903467 
0.02311136 
0.01763100 
0.01376034 
0.01041313 
0.0081 7928 
0.00632103 
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TABLE I1 (Continued) 

4.00 0.00032778 0.00494827 
4.25 0.00020113 0.00389655 
4.50 0.00012822 0.003 1 1562 
4.75 0.00008485 0.00253069 
5 .oo 0.00005667 0.00206050 
5.50 0.00002469 0.00134291 
6.00 0.00001197 0.00091908 
7 .OO 0 .OOOOO307 0.000~606 
8 .oo 0.00000109 0.00025300 
9.00 O.OOOOOO33 0.00013310 
10 .o 0.m0012 0.00007626 
11.0 O.OOOOOO06 0.00005 13 7 
12.0 0.00000002 0.00002973 
14.0 0 0.00001269 
16.0 0 0 .OOOOO638 
18 .o 0 0.00000583 
20.0 0 0.00000250 
25 .O 0 0.00000461 
30.0 0.00000001 0.00000997 

CONCLUSIONS 

It has been shown in this paper that quantities in- 
volving weak perturbations may be calculated to second 
order in perturbation theory with a Hartree-Fock 
ground-state approximating the true initial unperturbed 
state. The method described necessitates obtaining a 
complete set of single-particle Hartree-Fock states 
and i t  was shown that for most neutral atoms and 
molecules the unoccupied states are then readily re- 

TABLE 111. Results of the calculation. 

o l d ( A 0 ) 3  P aq(Ao)' "/m 

1s contribution 0.0068 0.455 0.00057 0.163 

2s contribution 4.537 1.316 9.255 0.508 

Total 4.54 1.77 9.26 0.671 

Dalgarno-McNamee 4.5 1.8 9.1 0.77 

placed by integrations. This method has the advantage 
that once the complete set of single-particle states has 
been calculated, all second-order quantities can be 
calculated with little extra work. The Introduction of 
this paper indicated the many different types of prob- 
lems that can be treated and in Refs. la,  lb,  and IC 
many other second-order problems are discussed. 
Higher-order perturbations can of course be calculated 
but the work becomes more difficult (though not 
always prohibitive, e.g., see Ref. 3) .  However, it 
should be noted that in this perturbation calculation, 
which corresponds to the uncoupled Hartree-Fock 
approximation used by Dalgarno,lb the dipole shielding 
factor is 1.77 compared to the theoretical value of 1.00. 
This indicates that higher-order terms in the expansion 
must be considered before truly accurate results can 
be obtained. As it stands, the method of this paper is 
applicable to any problem for which any of the various 
forms of perturbation theory rapidly converge and for 
which the Hartree-Fock is a good zero-order 
approximation. 


